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Free-volume fraction in hard-sphere mixtures and the osmotic spinodal curve
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The sensitivity of the theoretical spinodal curve deduced from the osmotic equilibrium equation for
asymmetric hard-sphere mixtures is examined by evaluating the free-volume fraction from three expres-
sions of the excess chemical potential. The conditions for predicting a reduction of the stability domain
with increasing asymmetry are discussed. The necessity of modifying this approach in the presence of

attractions between the smaller species is underlined.

PACS number(s): 82.70.Dd

The stability of highly asymmetric mixtures of parti-
cles with hard core interactions has recently been the
subject of several theoretical [1-4] and experimental
[5~7] investigations. Their theoretical study is however
still a difficult problem because of the large difference in
size between the various species. For instance, computer
simulations are available only for limited diameter ratios
or packing fractions [8]. Their phase behavior is thus
presently discussed mostly from approximate analytical
theories, including integral equations [1], density func-
tionals [3] and other thermodynamical methods [2, 4]. In
this last group, the approach recently presented by Lek-
kerkerker et al. [2] is much easier to implement than in-
tegral equations or density functional calculations for in-
stance. In particular, it leads to a very simple equation
for the spinodal curve. It might thus be very useful for a
quick estimation of the stability domain of mixtures with
hard core interactions. It is therefore important to test
the reliability of its predictions. For a diameter ratio
€=0.1, these predictions [2(a)] are in qualitative agree-
ment with Biben and Hansen [1] and Rosenfeld’s [3] re-
sults. The first purpose of this note is then to examine—
in the case of hard spheres mixtures—the sensitivity of
the estimated spinodal to the diameter ratio € and to the
expression of the free volume fraction a. The latter plays
indeed a central role in this approach (see, for instance,
Ref. [2b]). The second purpose is to discuss it in the
more general context of particles with attractive forces.
The relevant equations from Ref. [2a] are thus briefly
outlined here.

By considering the osmotic equilibrium of a mixture of
small (diameter d,, number density p,, packing fraction
7, and chemical potential u;) and large (d,,p,,7,) parti-
cles, an approximate expression of the osmotic pressure
was obtained as

M=11n,)+ 11" ()

a—ng—;xz J R (1)

where I1” and II9 are, respectively, the pressure in the
reservoir of small particles and that of the pure fluid of
large ones. The spinodal condition (0Il /apz)MZO then

reads:
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In the derivation of Egs. (1) and (2), the potential of mean
force is approximated as W(Ry,u;) =U(Ry)
—I(u,)V™(Ry) and the free volume V(R ) avail-
able to the small spheres for a given configuration R of
the N large ones is replaced by its mean field value
yiee=g ¥ on the pure fluid of large spheres (¥ being the
volume of the system). For a practical application, IT"
and II9 can be evaluated from known expressions of the
compressibility factor Z=pI1/p of the one component
fluid of hard spheres (p is the number density and
B=1/kgT). As suggested in Ref. [2], a can be obtained
from Widom’s particle insertion theorem [9] as
a=exp(—pBu*(n,;=0)), the small spheres excess (over
the ideal gas value) chemical potential u®(7;=0) being
evaluated from known expressions for hard spheres
mixtures. It is convenient to express Bu as
Bu(n,;=0,7,,e)=—In(1—n,)+P(y,c) where
y=mn,/(1—n,) and where P(y,e) depends on the equa-
tion of state used. The free volume fraction is then given
by a=(1—mn,)e "70"®) and the equation for the spinodal
reads:

d(n,Z(n,))
— (1= 7" z[]
d, 72 M) <€ M
ap |’ ap
_3 —— —
Xe ‘dy 5 0. (3

In the second term of this equation, Z depends on the ra-
tio n{=m,/a because the pressure II'(1;) must be com-
puted with the packing fraction of the small particles in
the reservoir [2a].

In order to test the sensitivity of the predicted spino-
dal, we have compared three different expressions of Su®*.
The first one—used by Lekkerkeker et al. —is the scaled
particle theory (SPT) expression [10]. P(y,€) can then be
put in the form:
e2+(y+3y2+3pded . @

Pgpr(y,e)=3ye+ 3y+%y2
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The second one obtained from the Mansoori Carnahan
Starling Leland (MCSL) equation of state [11(b)] gives:

Pycs.(7,6)=(—3e?+2e*)In(1+y)+3ye
+(6y +3p1el+(—y+ay2+2pEd . (5)

The last (and less familiar) one is obtained by following
Andrews and Ellerby’s prescriptions [12] for computing
the volume available to the inserted particle. In this ap-
proach, the central quantity is the average volume w
effectively excluded to the inserted particle by the host
particles. Simple physical arguments are given for es-
timating this volume [12]. o is taken as a linear function
of density with coefficients depending on the diameter ra-
tio e. The volumes w;;; and w;y; excluded at low and
high density by a single host of type k to an inserted par-
ticle of type i are interpolated between the values for £ =0
(insertion of a point particle) and €= 1 (inserted particle
of same or larger size than the host particles). As dis-
cussed by Speedy [13], this approach amounts to
parametrizing in the range o /2 <r < ¢ the density pG (r)
of spheres (of diameter o in the one component case) at
the surface of a cavity of radius . One can then write
P(y,e) as:

Poe(y,e)=(3e+3e?+e)(y +yH){1+y(2—c,)
+y2eole, —cy)+1—c ]} 7! (6)

where ¢, =6/mV'2 and where the coefficients ¢; =1+ Le
and cg =14 (cy—1)e arise from a linear interpolation of
@;7; and ;. with €.

One finally needs to specify the compressibility factor
Z. Though the results were found to be rather insensitive
to the specific form used, each expression of P(y,e) was
used with the corresponding Z, ie., Zgpr
=(1+n+92)/(1—n) [10], Z=(1+n+n*—n°)/
(1—m)3 for Carnahan Starling’s (CS) equation of state
[11(a)] and for Andrews and Ellerby’s one [12]:
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(z=com,B=Tcy ', y=2Zc;'=1+A).

Figure 1 shows the resulting spinodals for e=0.1 and
£=0.025 (the SPT curve for e=0.1 is the same as that of
Ref. [2(a)]). Besides the quantitative differences for
£=0.1, the striking feature is that while the MCSL and
AE calculations predict a reduction of the stability
domain with decreasing €, the SPT one gives just the op-
posite, that is a clearly unphysical trend. This anomalous
behavior has also been pointed out recently in Ref. [3(b)].
The technical reason for this is the behavior of the quan-
tity G(m,,e)=c *{(dP/dy)*+d?P /dy*} whose loga-
rithm is shown in Fig. 2 versus £ ~! for two packing frac-
tions of the large spheres. As the asymmetry increases
Gspr(1,,€) decreases at constant 77, and becomes nearly
constant. In parallel, a increases towards its limiting

value a™=1—m, Since Zgpy(n,/a) would then de-
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FIG. 1. Spinodal curve in the variables 7, (large spheres) and
7, (small spheres), at diameter ratios €=0.1: full curves;
€=0.025: dashed curves. MCSL: empty triangles; SPT: full tri-
angles, AE: empty squares; crosses: constant pressure results for
£=0.1 from Refs. [1(b),1(c)]

crease were 17, fixed, 7, must increase with € ! in order
to keep constant the product 17,Zgpr(7,/a)Ggpr(1,,8€).
A simple algebra shows that Ggpr(7,,€) actually behaves
as go+g,e+0(e?), with g, >0 and g, > 0, because of the
exact cancellation of the terms of order €? in
(dP/dy)*+d?P /dy*. This peculiarity does not occur
with the MCSL and AE calculations, the function
G(7,,€) behaving as g’ ;e '+gy+0(e) with g{ and
g~ >0. The behavior (at constant 7,) of 7; with ¢ ! re-
sults there from a competition between the increase of
G (7,,e) and the decrease of Z(7,/a). At low asym-
metry, the decrease of Z(7,/a) dominates so that 7,
must again increase with ¢ ", At least when compared to
the results of Refs. [1] and [3], the MCSL and AE spino-
dals then suffer from the same defect than the SPT one,
though the limit is remarkably lower for the AE spinodal
(¢ '=~4) than for the MCSL one (¢~ !~10) (the AE spi-
nodal is however rather sensitive to the coefficients of the
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FIG. 2. Logarithm of the function G(7,¢e) versus & ..
Dashed curves: 7,=0.1, full curves: 1,=0.4. Meaning of sym-
bols as in Fig. 1.



1992

interpolation with € for low asymmetry). In some ways,
an incorrect behavior for € close to unity is not surprising
since the approximation for the potential of mean force
and the replacement of the free volume by its average [2]
should worsen then. At sufficiently large e~ 1 the in-
crease of G(7),,€) dominates so that 7, decreases. Then
the MCSL and AE spinodals both obey the expected
trend with increasing asymmetry. However, in contrast
with the larger stability domain predicted by the MCSL
calculation, the AE calculation is close to quantitative
agreement with the results of Ref. [1] (crosses in Fig. 1
for e " '=10).

Since the numerical values of a computed with the
three expressions are very close (for e=1 de Souza et al.
[14] found both agpr and ayegr in good agreement with
Monte Carlo data), the qualitative difference between the
SPT and the MCSL or the AE spinodals illustrates well
the importance of having the correct variation of
d’a/dp} with ¢7! and the corresponding increase of
Z(n,/a)G (n,,¢) (at constant 17,). However, while these
contrasted behaviors with € originate from differences in
the expressions of u®*, the physical meaning of the latter
is not immediate. Yet, the possibility of significant im-
provement on the SPT spinodal by using two approaches
which are all but closely related suggests that the SPT re-
sults are an exception and not the rule (we mention in
passing that we found the SPT and the MCSL equation of
state consistent with Smith and Labik’s criterion [15]
Z=1+1{0Buf(n,;=0)/3e}._y, in contrast with the AE
equation. In the latter case, the discrepancy depends on
the way one interpolates w;;; and ;g with €).

It is finally instructive to consider the phase diagram in
the variables I1* =BI1d3 and x }/* where x, is the concen-
tration of the large spheres (Fig. 3), as in Ref. [1(c)]. At
fixed diameter ratio and with x, increasing at constant
pressure, the AE spinodal can be reached well before the
MCSL or SPT ones, in agreement with a predicted small-
er stability domain in the variables 7,,71,. Figure 3 also
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FIG. 3. Reduced total pressure I1*=(1/ky;T)IId} versus
x173 for e=0.1. x, =p,/(p1+py): concentration of the large
spheres; Crosses: constant pressure results from Refs. [1(b),1(c)].
The last cross on the right hand side corresponds to 7,=0.59
(also end points of the curves). Meaning of symbols as in Fig. 1.
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well illustrates an important feature related to the higher
SPT and MCSL 7, values on the spinodal. At low x,,
these values go together with an important contribution
to the pressure from the fluid of small hard spheres and
hence with much higher pressures than the AE and the
integral equations pressures [1].

Figure 3 clearly illustrates the crucial role of the pres-
sure of the small hard spheres fluid. One may then
wonder whether these features would remain in the pres-
ence of attractive forces between the small particles as in
ordinary colloidal suspensions. Indeed these forces
would considerably reduce the pressure of the fluid of
small particles and accordingly the pressure imbalance
when two large spheres approach at a distance smaller
than the diameter of the small ones. This might have a
significant influence on the stability of the mixture. The
calculations of Jamnik et al. [16] on sticky hard spheres
show for instance that adhesion among the small parti-
cles lowers the force between two approaching large
spheres, a result coherent with simple expressions of the
depletion force such as that proposed by Vrij [17]. The
spinodal equation [Eq. (3)] also shows that if the free
volume fraction were unchanged by this adhesion, a re-
duced pressure of the small particles fluid would imply
larger values of 17, at constant 7),, that is a greater stabili-
ty than for pure hard spheres. We have checked that re-
placing the hard spheres compressibility factor Z in Eq.
(3) by that of sticky-hard spheres [18] can suppress the
spinodal instability even for a moderate stickiness (for in-
stance this already happens for a Baxter stickiness pa-
rameter 7=~0.1 for which an ordinary solvent would be
above the critical point). However, calculations in the
Percus Yevick approximation (PYA) for mixtures of
sticky hard spheres show that small sticky spheres reduce
the stability domain [19, 20]. This suggests that at least
in this idealized model of attractive forces, the instability
is not governed by a strong pressure imbalance. With
pure hard core interactions, the latter indeed favors an
increase of the free space available to the small spheres
and hence an increase of their entropy when the large
ones begin to cluster [21] (the large particles entropy de-
creases then, but they are much less numerous). Al-
though a lower pressure imbalance would imply less
available space and hence a lower increase of the small
particles entropy, the instability associated with such at-
tractions seems to be dictated by the associated lowering
of the internal energy. This lowering could be strong
enough to make the free energy of the inhomogeneous
suspension lower than that of the homogeneous one. Be-
sides its possible relevance to the interpretation of insta-
bility in some colloidal suspensions usually discussed
mostly in terms of steric effects [5—7], this discussion sug-
gests that important modifications in the spinodal equa-
tion would be required in the presence of attractions. In
particular, they may significantly modify the free volume
fraction compared with that relative to hard spheres mix-
ture (a modification of the free volume by the attractions
was suggested in Ref. [22] for mixtures of spheres and
rod-like polymers). Since equations of state for mixtures
with attractive forces are rather scarce, one still has to
rely on simple theories such as the PYA. However, one
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then faces the difficulty that—at least for hard sphere
mixtures—the PYA works poorly when the diameter ra-
tio significantly differs from unity. In particular, it does
not predict a spinodal instability. As suggested in our
previous work [20], an ad hoc correction for this may be
obtained by introducing an artificial stickiness between
the large spheres. The associated stickiness parameter
might thus be determined by imposing that the diver-
gence of the PY structure factors occurs precisely for the
packing fraction on the spinodal line. A simple route for

the hard spheres spinodal as that proposed by Lekkerk-
erker et al. for example is then required, and this was the
initial motivation for this study. In this respect obtaining
reliable expressions of the derivatives of the free volume
fraction would be a necessary first step. On the other
hand, attempts to modify the expression of the free
volume fraction in the presence of attractive forces while
preserving the simplicity of the osmotic equilibrium ap-
proach should still remain useful.
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